Hopf Algebras, Renormalization and Noncommutative Geometry

نویسندگان

  • Alain CONNES
  • Dirk KREIMER
چکیده

We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of tranverse index theory for foliations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf Algebras in Noncommutative Geometry

We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic coh...

متن کامل

Lessons from Quantum Field Theory Hopf Algebras and Spacetime Geometries

We discuss the prominence of Hopf algebras in recent progress in Quantum Field Theory. In particular, we will consider the Hopf algebra of renormalization, whose antipode turned out to be the key to a conceptual understanding of the subtraction procedure. We shall then describe several occurences of this, or closely related Hopf algebras, in other mathematical domains, such as foliations, Runge...

متن کامل

Noncommutative renormalization for massless QED

We study the renormalization of massless QED from the point of view of the Hopf algebra discovered by D. Kreimer. For QED, we describe a Hopf algebra of renormalization which is neither commutative nor cocommutative. We obtain explicit renormalization formulas for the electron and photon propagators, for the vacuum polarization and the electron self-energy, which are equivalent to Zimmermann’s ...

متن کامل

The Fourth Annual Spring Institute on Noncommutative Geometry and Operator Algebras

We will give an introduction to Rota-Baxter algebras which started with a probability study of Spitzer in 1950s and found interesting applications in the work of Connes and Kreimer on renormalization of QFT. We will discuss their basic properties, the constructions of the free objects and applications to multiple zeta values by renormalization method. Some other applications will be given in Ku...

متن کامل

Noncommutative Geometry and Quantization

The purpose of these lectures is to survey several aspects of noncommutative geometry, with emphasis on its applicability to particle physics and quantum field theory. By now, it is a commonplace statement that spacetime at short length —or high energy— scales is not the Cartesian continuum of macroscopic experience, and that older methods of working with functions on manifolds must be rethough...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998